Hypothesis Testing: Review
Hypothesis Testing Framework

1. Formulate null-hypothesis
2. Collect data
3. Check model assumptions
4. Compute statistic
5. Compute p-value based on the statistic
6. (Optionally) check p-value against a threshold and reject the null hypothesis if the p-value is smaller than the threshold
Binomial distribution

• Sample Null hypothesis: the probability of 1 is 0.5
 • Another null hypothesis could be that the probability of 1 is e.g. 0.2

• Model assumption: the trials are independent
 • If you got data that reads 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 you might suspect something is amiss
 • Obviously the outcomes must be just 1s and 0s

• Statistic: number of 1’s nH

• P-value for the null hypothesis that Prob(1) = prob
 expect = size*prob
 pbinom(q = expect - abs(nH-expect), size = my.size, prob = prob) +
 1- pbinom(q = expect + abs(nH-expect) -1, size = my.size, prob = prob)

• Can also compute P-value using Guassian approximation
Normal Distribution, known s.d.

- Sample null hypothesis: the mean of the population is $\mu = 0.7$
- Model assumption: the individuals in the population are normally distributed
 - Plot the sample (density, histogram, boxplot) to verify that the distribution is normal
 - Histogram and density approximately bell-shaped
 - Almost no datapoints outside of $[\mu - 3\sigma, \mu + 3\sigma]$
 - Estimate μ and σ using the sample mean \bar{x} and sample standard deviation s
- Data: observations x_1, \ldots, x_n
- Statistic: the sample mean $\bar{x} = \frac{x_1 + \cdots + x_n}{n}$
- If the null hypothesis holds, $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- P-value:
 $$2 \times \text{pnorm}(\mu - \text{abs}(\mu - \text{mean}(x)), \text{mean} = \mu, \text{sd} = \sigma/\sqrt{n})$$
Normal distribution, unknown s.d.

• Sample null hypothesis: the mean of the population is $\mu = 0.7$
• Model assumption: the individuals in the population are normally distributed with some standard deviation
 • Plot the sample (density, histogram, boxplot) to verify that the distribution is normal, with some standard deviation
 • Histogram and density approximately bell-shaped
 • Almost no datapoints outside of $[\mu - 3\sigma, \mu + 3\sigma]$
 • Estimate μ using the sample mean \bar{x}
• Data: observations $x_1, ..., x_n$
• Statistic: the t-statistic $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$
• If the null hypothesis holds, $t \sim t(n - 1)$
• P-value:
 $2 \times \text{pt}(-\text{abs}(t), \ df = n - 1)$
Two samples from normal distributions

- Null hypothesis: the difference between the mean of population A and the mean of population B is 0
- Model assumption: the individuals in the two populations are normally distributed, possibly with different standard deviations
 - Plot the both samples (density, histogram, boxplot) to verify that the distributions are normal
 - Histograms and densities approximately bell-shaped
 - Almost no datapoints outside of \([\mu_i - 3\sigma_i, \mu + 3\sigma_i]\)
 - Estimate \(\mu_a, \mu_b, \sigma_a, \sigma_b\) using the sample means and sample standard deviations
- Data: two sets of observations
- Statistic: the t-statistic \(t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}\)
- If the null hypothesis holds, \(t \sim t(\nu), \nu = \ldots\)
- P-value:
 \[2 \times pt(-\text{abs}(t), \text{df} = \nu)\]
P-values using fake data

• Simulate fake data that conforms to the assumption of the null hypothesis
• For each fake dataset, compute the statistic
• Compute the proportion of the time that the statistic for the fake dataset is more extreme than the statistic you actually observe in your data