Inference in Linear Regression

Curve-fitting methods and the messages they send

- Linear: "Hey, I did a regression."
- Quadratic: "I wanted a curved line, so I made one with math."
- Logarithmic: "Look, it's tapering off!"
- Exponential: "Look, it's growing uncontrollably!"
- LOESS: "I'm sophisticated, not like those bumbling polynomial people."
- Linear, no slope: "I'm making a scatter plot but I don't want to."

https://xkcd.com/2048/

SML201: Introduction to Data Science, Spring 2019
Michael Guerzhoy
Refresher: Linear Regression

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1^{(1)}, x_2^{(1)}, \ldots, x_n^{(1)}$</td>
<td>$y^{(1)}$</td>
</tr>
<tr>
<td>$x_1^{(2)}, x_2^{(2)}, \ldots, x_n^{(2)}$</td>
<td>$y^{(2)}$</td>
</tr>
<tr>
<td>$x_1^{(3)}, x_2^{(3)}, \ldots, x_n^{(3)}$</td>
<td>$y^{(3)}$</td>
</tr>
</tbody>
</table>

New prediction:
$$\hat{y}^{(i)} = a_0 + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \cdots + a_n x_n^{(i)}$$

Error/residual:
$$e^{(i)} = y^{(i)} - \hat{y}^{(i)}$$

Sum of Squared Errors/Cost:
$$\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

minimize
Linear Regression: Null Hypothesis

• Usually of the form $a_j = 0$
 • The j-th feature is not associated with the output
Linear Regression: Model Assumptions

• \(y^{(i)} \approx a_0 + a_1 x_1^{(i)} + a_2 x_2^{(i)} + \cdots + a_n x_n^{(i)} \)
 • Can check by plotting if there are few x’s. Otherwise check with diagnostic plots

• \(e^{(i)} \sim N(0, \sigma^2) \)
 • Check with diagnostic plots

• The residuals \(e^{(i)} \) are independent of each other, and independent of x
 • Check with diagnostic plots
Q-Q plots

• Sort all the observations from both distribution 1 and the normal distribution
• Plot the observations from distribution 1 (in order) vs. the observations from the normal (in order)
• Approx straight line if distribution 1 is normal
Q-Q plots

Figure 3.11: Histograms and normal probability plots for three simulated normal data sets; $n = 40$ (left), $n = 100$ (middle), $n = 400$ (right).

OpenIntro Statistics
Linear Regression: test

• For the null hypothesis $a_j = 0$, and assuming the model assumptions are satisfied, we can compute a p-value using a t-test

• (Switch to R)
Linear Regression: Multiple Comparisons warning + F-test

• We can only run one pre-registered t-test
 • If there are multiple features, cannot test the hypotheses that each of them is non-zero
• Can run an F-test, where the null hypothesis is that all the $a_j's$ are 0
 • (Switch to R)
Linear Regression: correlation is not causation

• Rejecting the hypothesis that $a_j = 0$ doesn’t mean x_j influences the value of y
 • Reverse causation
 • Common cause
 • Indirect causation
 • Coincidence
 • ...
 • (Type I error)
If we are trying to predict $y^{(i)}$, the simplest thing is to predict \bar{y} every time.

Can compute

$$R^2 = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{m} (y^{(i)} - \bar{y})^2}$$

- R^2 close to 1 is usually interpreted as a strong linear relationship between the inputs and the outputs
- Low R^2 is usually interpreted as a weak (linear) relationship
Correlation

• Trying to predict $y \approx a_0 + a_1 x$

• The correlation is $r = \sqrt{R^2}$ is y generally increases when x increases, and $r = -\sqrt{R^2}$ otherwise
Anscombe’s quartet

$r=0.816$ for all four datasets
$r = .23, p = .042$
Linear Regression summary

• Formulate null hypothesis
• Collect data
• Visualize data to check model assumptions
• If model assumptions seem approximately satisfied, can run regression