Hypothesis Testing

SML201: Introduction to Data Science, Spring 2020
Michael Guerzhoy
P-Value

• Assuming the Null Hypothesis is true, the probability of observing a value that is as extreme or more extreme than what we observe.

• Informally: if nothing is actually going on, how weird would it be to observe the data we do?
Hypothesis testing

• A low p-value indicates we have evidence against the null hypothesis

• Traditional rule:
 • *Reject* the null hypothesis if the p-value is smaller than 0.05
 • Note: if the p-value is not smaller than 0.05, we do NOT accept the null hypothesis as true. We merely don’t have evidence against it
Hypothesis testing procedure

• Check that the *model assumptions* are satisfied by visualizing the data
• Compute the p-value
• *Reject* the null hypothesis if the p-value is smaller than a threshold
Is a distribution normal?

• The density should be roughly bell-shaped
• There should be very few (if any) data points further away than 3 standard deviations from the median
25th percentile: the point such that 25% of the data is smaller than the point, and 75% of data is larger

Outliers: datapoints that are very far away from most other datapoints. The definition is context-dependent
Finches example
Type I/Type II errors

- Type I error: rejecting a true null hypothesis (analogous to “false positive”)
- Type II error: failing to reject a false null hypothesis (analogous to “false negative”)
- Trade-off between the probability of Type I and Type II errors
 - Can’t make a Type I error if we never reject a hypothesis
Probability of a Type I error

• If we reject a null hypothesis whenever we get a p-value of 0.05 or smaller, we’ll reject 1 out of 20 true null hypotheses

• One out of 20 studies will report evidence against true null hypotheses
 • Assuming each study contained exactly one hypothesis
 • Assuming every study actually gets published
Multiple hypotheses

• In Precept 9, we had three possible pairs of wines
• A t-statistic outside of approximately [-2, 2] would lead to a p-value of less than 5%
• Even if the wines are all the same, there is a greater than 5% probability of finding a “significant difference”, because we are looking at three pairs and not one.
Multiple Hypotheses

• Solution 1: just have one null hypothesis
 • Would make science really slow

• Solution 2: pre-register all your null hypotheses, and report all results
 • If you report the results of 5 hypotheses, we know that you have a more than 1/20 chance of rejecting a true hypothesis
 • Required by the NIH for serious studies

• Solution 3 (in conjunction with Solution 2): adjust your p-value thresholds to compensate
 • There are formulas to do this. Most result in needing very large sample sizes (or large differences in the data) to reject any hypothesis at all

• Solution 4: Adjust your null hypothesis to “the range is y”, or to “none of the wines are different from each other”
Science-Wide Multiple Hypotheses

• If a whole community of scientists keeps testing the same hypothesis (or variations of the same hypothesis), *someone* will reject it
 • “The file drawer effect”: journals will generally publish interesting results (a null hypothesis was rejected) and not publish boring results

• This is the same as trying slightly different versions of the hypothesis again and again
What is the Science-Wide False Discovery Rate?

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

- Estimates vary from 15% to over 50%
Other causes of false discoveries

• Fraud
• P-hacking: rather than pre-registering a single hypothesis, testing multiple different hypotheses until one is rejected, and publishing that
 • Also a kind of fraud
• Honest research that is nevertheless like p-hacking
 • “The Garden of Forking Paths”
• Bad experiments
Solutions

• Pre-registration of studies
• Publishing negative as well as positive results
• Setting p-values to be really low (in particle physics, the standard for discovery is $p = 0.0000003$)
• Replication: a study is only accepted if it was replicated
• Not believing “just one study”
 • Standard practice in medicine
• Only testing hypotheses when there is sound scientific basis for believing that something might be going on
 • E.g., a theory about biology, physics etc.
 • Limits number of hypotheses
The Social Psychology Replication Crisis

• Many studies in social psychology used very small samples
 • Of college undergrads
• In recent years, many studies failed to replicate
• Several famous examples of fraud or near-fraud
 • Coaching in the Stanford Prison Experiment?
• Currently, there is a movement toward more rigorous procedures and larger sample sizes
INTRODUCTION

With the extreme dimensionality of functional neuroimaging data comes extreme risk for false positives. Across the 130,000 voxels in a typical fMRI volume the probability of a false positive is almost certain. Correction for multiple comparisons should be completed with these datasets, but is often ignored by investigators. To illustrate the magnitude of the problem we carried out a real experiment that demonstrates the danger of not correcting for chance properly.

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at the time of scanning.

Task. The task administered to the salmon involved completing an open-ended mentalizing task. The salmon was shown a series of photographs depicting human individuals in social situations with a specified emotional valence. The salmon was asked to determine what emotion the individual in the photo must have been

GLM RESULTS

A t-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.
Type II errors

• Inevitable with small sample sizes
 • A small sample will not provide evidence against a null hypothesis a lot of the time

• Not really an error
“I have never in my life committed either a type I or a type II error” – Andrew Gelman

• All null hypotheses are false
• A type II error is not an error anyway
Type M errors and Type S errors

- Type M error: incorrectly estimating the *magnitude* of the effect
- Type S error: incorrectly estimating the *direction* of the effect
- Doesn’t really fit in well in the p-value framework
ASA Statement on P-values

• P-values can indicate how incompatible the data are with a specified statistical model.
• P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
• Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
• Proper inference requires full reporting and transparency.
• A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
• By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.
P-values and Q-tips